Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(6): 6965-6975, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38371846

RESUMO

Our goal was to test the feasibility of a new theranostic strategy in chronic epilepsy by targeting cathepsin function using novel cathepsin activity-based probes (ABPs). We assessed the biodistribution of fluorescent cathepsin ABPs in vivo, in vitro, and ex vivo, in rodents with pilocarpine-induced chronic epilepsy and naïve controls, in human epileptic tissue, and in the myeloid cell lines RAW 264.7 (monocytes) and BV2 (microglia). Distribution and localization of ABPs were studied by fluorescence scanning, immunoblotting, microscopy, and cross-section staining in anesthetized animals, in their harvested organs, in brain tissue slices, and in vitro. Blood-brain-barrier (BBB) efflux transport was evaluated in transporter-overexpressing MDCK cells and using an ATPase activation assay. Although the in vivo biodistribution of ABPs to both naïve and epileptic hippocampi was negligible, ex vivo ABPs bound cathepsins preferentially within epileptogenic brain tissue and colocalized with neuronal but not myeloid cell markers. Thus, our cathepsin ABPs are less likely to be of major clinical value in the diagnosis of chronic epilepsy, but they may prove to be of value in intraoperative settings and in CNS conditions with leakier BBB or higher cathepsin activity, such as status epilepticus.

2.
Epilepsia ; 65(2): e14-e19, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38041575

RESUMO

The effect of fenfluramine and norfenfluramine enantiomers in rodent seizure models and their correlation with the pharmacokinetics of d- and l-fenfluramine in rats have been reported recently. To complement these findings, we investigated the pharmacokinetics of d- and l- norfenfluramine in rat plasma and brain. Sprague-Dawley rats were injected intraperitoneally with 20 mg/kg and 1 mg/kg l- norfenfluramine. A 1 mg/kg dose of d-norfenfluramine was used because higher doses caused severe toxicity. The concentration of each enantiomer in plasma and brain was determined at different time points by liquid chromatography/mass spectrometry. Pharmacokinetic parameters were compared between norfenfluramine enantiomers, and with those reported previously for fenfluramine enantiomers after a 20 mg/kg, i.p., dose. All enantiomers were absorbed rapidly and eliminated, with half-lives ranging from 0.9 h (l-fenfluramine) to 6.1 h (l- norfenfluramine, 20 mg/kg) in plasma, and from 3.6 h (d-fenfluramine) to 8.0 h (l-fenfluramine) in brain. Brain-to-plasma concentration ratios ranged from 15.4 (d-fenfluramine) to 27.6 (d-norfenfluramine), indicating extensive brain penetration. The fraction of d- and l-fenfluramine metabolized to norfenfluramine was estimated to be close to unity. This work is part of ongoing investigations to determine the potential value of developing enantiomerically pure l-fenfluramine or l-norfenfluramine as follow-up compounds to the marketed racemic fenfluramine.


Assuntos
Fenfluramina , Norfenfluramina , Ratos , Animais , Norfenfluramina/farmacocinética , Ratos Sprague-Dawley , Encéfalo , Estereoisomerismo
3.
Front Cell Dev Biol ; 11: 1217149, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37954205

RESUMO

We recently demonstrated that the histone deacetylase inhibitor valproic acid (VPA) reprograms the cisplatin-induced metabolome of triple-negative breast cancer (TNBC) cells, including a shift in hexose levels. Accordingly, here, we tested the hypothesis that VPA alters glucose metabolism in correlation with cisplatin sensitivity. Two TNBC cell lines, MDA-MB-231 (a cisplatin-resistant line) and MDA-MB-436 (a cisplatin-sensitive line), were analyzed. The glycolysis and oxidative metabolism were measured using the Glycolysis Stress Test kit. The expression of aldehyde dehydrogenases (ALDHs), enzymes linked to drug resistance, was investigated by Western blot and real-time PCR analyses. We additionally studied the influence of ALDH inhibition by disulfiram on the viability of MDA-MB-231 cells and on a TNBC patient-derived organoid system. Cisplatin treatment reduced the extracellular acidification rate in MDA-MB-436 cells but not MDA-MB-231 cells, whereas VPA addition increased the extracellular acidification rate in both cell lines. VPA further reduced the oxygen consumption rate of cisplatin-treated MDA-MB-436 cells, which correlated with cell cycle alterations. However, in MDA-MB-231 cells, the cell cycle distribution did not change between cisplatin/VPA-cisplatin treatments. In both cell lines, VPA increased the expression of ALDH isoform and ALDH1A1 expression. However, only in MDA-MB-231 cells, VPA synergized with cisplatin to augment this effect. Disulfiram sensitized the cells to the cytotoxic effects of the VPA-cisplatin combination. Furthermore, the disulfiram-VPA-chemotherapy combination was most effective in TNBC organoids. Our results show that ALDH overexpression may act as one mechanism of cellular resistance to VPA in TNBC and that its inhibition may enhance the therapeutic efficacy of VPA-chemotherapeutic drug combinations.

4.
Epilepsia ; 64(6): 1673-1683, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36995363

RESUMO

OBJECTIVES: To investigate the comparative antiseizure activity of the individual enantiomers of fenfluramine and its major active primary metabolite norfenfluramine in rodent seizure models, and its relationship with the pharmacokinetics of these compounds in plasma and brain. METHODS: The antiseizure potency of d,l-fenfluramine (racemic fenfluramine) was compared with the respective potencies of its individual enantiomers and the individual enantiomers of norfenfluramine using the maximal electroshock (MES) test in rats and mice, and the 6-Hz 44 mA test in mice. Minimal motor impairment was assessed simultaneously. The time course of seizure protection in rats was compared with the concentration profiles of d-fenfluramine, l-fenfluramine, and their primary active metabolites in plasma and brain. RESULTS: All compounds tested were active against MES-induced seizures in rats and mice after acute (single-dose) administration, but no activity against 6-Hz seizures was found even at doses up to 30 mg/kg. Estimates of median effective doses (ED50 ) in the rat-MES test were obtained for all compounds except for d-norfenfluramine, which caused dose-limiting neurotoxicity. Racemic fenfluramine had approximately the same antiseizure potency as its individual enantiomers. Both d- and l-fenfluramine were absorbed and distributed rapidly to the brain, suggesting that seizure protection at early time points (≤2 h) was related mainly to the parent compound. Concentrations of all enantiomers in brain tissue were >15-fold higher than those in plasma. SIGNIFICANCE: Although there are differences in antiseizure activity and pharmacokinetics among the enantiomers of fenfluramine and norfenfluramine, all compounds tested are effective in protecting against MES-induced seizures in rodents. In light of the evidence linking the d-enantiomers to cardiovascular and metabolic adverse effects, these data suggest that l-fenfluramine and l-norfenfluramine are potentially attractive candidates for a chiral switch approach leading to development of a novel, enantiomerically-pure antiseizure medication.


Assuntos
Fenfluramina , Norfenfluramina , Ratos , Camundongos , Animais , Fenfluramina/uso terapêutico , Norfenfluramina/metabolismo , Norfenfluramina/farmacologia , Roedores/metabolismo , Encéfalo/metabolismo , Convulsões/tratamento farmacológico , Convulsões/metabolismo
5.
BMC Vet Res ; 14(1): 365, 2018 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-30477496

RESUMO

BACKGROUND: Osteosarcoma (OSA) is the most common bone cancer in canines. Both transforming growth factor beta (TGFß) and Hippo pathway mediators have important roles in bone development, stemness, and cancer progression. The role of Hippo signalling effectors TAZ and YAP has never been addressed in canine OSA. Further, the cooperative role of TGFß and Hippo signalling has yet to be explored in osteosarcoma. To address these gaps, this study investigated the prognostic value of TAZ and YAP alone and in combination with pSmad2 (a marker of active TGFß signalling), as well as the involvement of a TGFß-Hippo signalling crosstalk in tumourigenic properties of OSA cells in vitro. An in-house trial tissue microarray (TMA) which contained 16 canine appendicular OSA cases undergoing standard care and accompanying follow-up was used to explore the prognostic role of TAZ, YAP and pSmad2. Published datasets were used to test associations between TAZ and YAP mRNA levels, metastasis, and disease recurrence. Small interfering RNAs specific to TAZ and YAP were utilized in vitro alone or in combination with TGFß treatment to determine their role in OSA viability, proliferation and migration. RESULTS: Patients with low levels of both YAP and pSmad2 when evaluated in combination had a significantly longer time to metastasis (log-rank test, p = 0.0058) and a longer overall survival (log rank test, p = 0.0002). No similar associations were found for TAZ and YAP mRNA levels. In vitro, TAZ knockdown significantly decreased cell viability, proliferation, and migration in metastatic cell lines, while YAP knockdown significantly decreased viability in three cell lines, and migration in two cell lines, derived from either primary tumours or their metastases. The impact of TGFß signaling activation on these effects was cell line-dependent. CONCLUSIONS: YAP and pSmad2 have potential prognostic value in canine appendicular osteosarcoma. Inhibiting YAP and TAZ function could lead to a decrease in viability, proliferation, and migratory capacity of canine OSA cells. Assessment of YAP and pSmad2 in larger patient cohorts in future studies are needed to further elucidate the role of TGFß-Hippo signalling crosstalk in canine OSA progression.


Assuntos
Neoplasias Ósseas/metabolismo , Doenças do Cão/metabolismo , Osteossarcoma/veterinária , Transdução de Sinais , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Linhagem Celular Tumoral , Progressão da Doença , Doenças do Cão/fisiopatologia , Cães , Feminino , Masculino , Osteossarcoma/metabolismo , Proteína Smad2/metabolismo
6.
Front Genet ; 7: 172, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27761138

RESUMO

A central challenge in pharmaceutical research is to investigate genetic variation in response to drugs. The Collaborative Cross (CC) mouse reference population is a promising model for pharmacogenomic studies because of its large amount of genetic variation, genetic reproducibility, and dense recombination sites. While the CC lines are phenotypically diverse, their genetic diversity in drug disposition processes, such as detoxification reactions, is still largely uncharacterized. Here we systematically measured RNA-sequencing expression profiles from livers of 29 CC lines under baseline conditions. We then leveraged a reference collection of metabolic biotransformation pathways to map potential relations between drugs and their underlying expression quantitative trait loci (eQTLs). By applying this approach on proximal eQTLs, including eQTLs acting on the overall expression of genes and on the expression of particular transcript isoforms, we were able to construct the organization of hepatic eQTL-drug connectivity across the CC population. The analysis revealed a substantial impact of genetic variation acting on drug biotransformation, allowed mapping of potential joint genetic effects in the context of individual drugs, and demonstrated crosstalk between drug metabolism and lipid metabolism. Our findings provide a resource for investigating drug disposition in the CC strains, and offer a new paradigm for integrating biotransformation reactions to corresponding variations in DNA sequences.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...